Stability of the reverse Blaschke-Santaló inequality for unconditional convex bodies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hadwiger Conjecture for Unconditional Convex Bodies

We investigate the famous Hadwiger Conjecture, focusing on unconditional convex bodies. We establish some facts about covering with homotethic copies for Lp balls, and prove a property of outer normals to unconditional bodies. We also use a projection method to prove a relation between the bounded and unbounded versions of the conjecture. 1 Definitions and Background Definition 1. A convex body...

متن کامل

Blaschke- and Minkowski-endomorphisms of Convex Bodies

We consider maps of the family of convex bodies in Euclidean ddimensional space into itself that are compatible with certain structures on this family: A Minkowski-endomorphism is a continuous, Minkowski-additive map that commutes with rotations. For d ≥ 3, a representation theorem for such maps is given, showing that they are mixtures of certain prototypes. These prototypes are obtained by app...

متن کامل

Stability results for some geometric inequalities and their functional versions ∗

The Blaschke Santaló inequality and the Lp affine isoperimetric inequalities are major inequalities in convex geometry and they have a wide range of applications. Functional versions of the Blaschke Santaló inequality have been established over the years through many contributions. More recently and ongoing, such functional versions have been established for the Lp affine isoperimetric inequali...

متن کامل

On a Loomis-whitney Type Inequality for Permutationally Invariant Unconditional Convex Bodies

For a permutationally invariant unconditional convex body K in R we define a finite sequence (Kj)j=1 of projections of the body K to the space spanned by first j vectors of the standard basis of R. We prove that the sequence of volumes (|Kj |)j=1 is log-concave.

متن کامل

Stability of the Blaschke-Santaló and the affine isoperimetric inequality

A stability version of the Blaschke-Santaló inequality and the affine isoperimetric inequality for convex bodies of dimension n≥ 3 is proved. The first step is the reduction to the case when the convex body is o-symmetric and has axial rotational symmetry. This step works for related inequalities compatible with Steiner symmetrization. Secondly, for these convex bodies, a stability version of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2014

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-2014-12334-3